Semi-Supervised Discriminative Classification Robust to Sample-Outliers and Feature-Noises
نویسندگان
چکیده
منابع مشابه
On Discriminative Semi-Supervised Classification
The recent years have witnessed a surge of interests in semi-supervised learning methods. A common strategy for these algorithms is to require that the predicted data labels should be sufficiently smooth with respect to the intrinsic data manifold. In this paper, we argue that rather than penalizing the label smoothness, we can directly punish the discriminality of the classification function t...
متن کاملSemi-supervised Classification from Discriminative Random Walks
This paper describes a novel technique, called D-walks, to tackle semi-supervised classification problems in large graphs. We introduce here a betweenness measure based on passage times during random walks of bounded lengths. Such walks are further constrained to start and end in nodes within the same class, defining a distinct betweenness for each class. Unlabeled nodes are classified accordin...
متن کاملClassification by semi-supervised discriminative regularization
Linear discriminant analysis (LDA) is a well-known dimensionality reduction method which can be easily extended for data classification. Traditional LDA aims to preserve the separability of different classes and the compactness of the same class in the output space by maximizing the between-class covariance and simultaneously minimizing the within-class covariance. However, the performance of L...
متن کاملSurrogate Learning - From Feature Independence to Semi-Supervised Classification
We consider the task of learning a classifier from the feature space X to the set of classes Y = {0, 1}, when the features can be partitioned into class-conditionally independent feature sets X1 and X2. We show that the class-conditional independence can be used to represent the original learning task in terms of 1) learning a classifier from X2 to X1 (in the sense of estimating the probability...
متن کاملRobust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis
A wide spectrum of discriminative methods is increasingly used in diverse applications for classification or regression tasks. However, many existing discriminative methods assume that the input data is nearly noise-free, which limits their applications to solve real-world problems. Particularly for disease diagnosis, the data acquired by the neuroimaging devices are always prone to different s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2019
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2018.2794470